Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Food Funct ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639426

RESUMEN

Limited research has been conducted on the differences in allergenicity among Alectryonella plicatula tropomyosin (ATM), Haliotis discus hannai tropomyosin (HTM), and Mimachlamys nobilis tropomyosin (MTM) in molluscs. Our study aimed to comprehensively analyze and compare their immunoreactivity, sensitization, and allergenicity while simultaneously elucidating the underlying molecular mechanisms involved. We assessed the immune binding activity of TM utilizing 86 sera from allergic patients and evaluated sensitization and allergenicity through two different types of mouse models. The dot-blot and basophil activation test assays revealed strong immunoreactivity for HTM, ATM, and MTM, with HTM exhibiting significantly lower levels compared to ATM. In the BALB/c mouse sensitization model, all TM groups stimulated the production of specific antibodies, elicited IgE-mediated immediate hypersensitivity responses, and caused an imbalance in the IL-4/IFN-γ ratio. Similarly, in the BALB/c mouse model of food allergy, all TM variants induced IgE-mediated type I hypersensitivity responses, leading to the development of food allergies characterized by clinical symptoms and an imbalance in the IL-4/IFN-γ ratio. The stimulation ability of sensitization and the severity of food allergies consistently ranked as ATM > MTM > HTM. Through an in-depth analysis of non-polar amino acid frequency and polar hydrogen bonds, HTM exhibited higher frequencies of non-polar amino acids in its amino acid sequence and IgE epitopes, in comparison with ATM and MTM. Furthermore, HTM demonstrated a lower number of polar hydrogen bonds in IgE epitopes. Overall, HTM exhibited the lowest allergenic potential in both allergic patients and mouse models, likely due to its lower polarity in the amino acid sequence and IgE epitopes.

2.
Mol Ther Oncol ; 32(2): 200790, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38595980

RESUMEN

N5-methylcytosine (m5C) methylation modification plays a crucial role in the epigenetic mechanisms underlying tumorigenesis, aggressiveness, and malignancy in diffuse glioma. Our study aimed to develop a novel prognostic risk-scoring system to assess the impact of m5C modification in glioma patients. Initially, we identified two distinct m5C clusters based on the expression level of m5C regulators in The Cancer Genome Atlas glioblastoma (TCGA-GBM) dataset. Differentially expressed genes (DEGs) between the two m5C cluster groups were determined. Utilizing these m5C regulation-related DEGs, we classified glioma patients into three gene cluster groups: A, B, and C. Subsequently, an m5C scoring system was developed through a univariate Cox regression model, quantifying the m5C modification patterns utilizing six DEGs associated with disease prognosis. The resulting scoring system allowed us to categorize patients into high- or low-risk groups based on their m5C scores. In test (TCGA-GBM) and validation (Chinese Glioma Genome Atlas [CGGA]-1018 and CGGA-301) datasets, glioma patients with a higher m5C score consistently exhibited shorter survival durations, fewer isocitrate dehydrogenase (IDH) mutations, less 1p/19q codeletion and higher World Health Organization (WHO) grades. Additionally, distinct immune cell infiltration characteristics were observed among different m5C cluster groups and risk groups. Our study developed a novel prognostic scoring system based on m5C modification patterns for glioma patients, complementing existing molecular classifications and providing valuable insights into prognosis for glioma patients.

3.
Nutrients ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474795

RESUMEN

Background: Seafood allergy is a significant global health concern that greatly impacts a patient's quality of life. The intervention efficacy of oral immunotherapy (OIT), an emerging intervention strategy, for seafood allergy remains controversial. This study aimed to perform a systematic review and meta-analysis to evaluate the efficacy of slightly processed allergen/meat from fish and crustacea in OIT, both in mouse models and clinical patients. Methods: A comprehensive literature search was performed in four mainstream databases and the EBSCOhost database to identify all relevant case-control and cohort studies. The aim was to elucidate the intervention efficacy, encompassing various processing methods and assessing the efficacy of multiple major allergens in OIT. Results: The meta-analysis included five case-control studies on crustacean allergens in mouse models and 11 cohort studies on meat from fish and crustacea in clinical patients for final quantitative assessments. In mouse models, crustacean allergen substantially decreased the anaphylactic score after OIT treatment (mean difference (MD) = -1.30, p < 0.01). Subgroup analyses with low-level heterogeneities provided more reliable results for crab species (MD = -0.63, p < 0.01, I2 = 0), arginine kinase allergen (MD = -0.83, p < 0.01, I2 = 0), and Maillard reaction processing method (MD = -0.65, p < 0.01, I2 = 29%), respectively. In clinical patients, the main meta-analysis showed that the slightly processed meat significantly increased the incidence rate of oral tolerance (OT, incidence rate ratio (IRR) = 2.90, p < 0.01). Subgroup analyses for fish meat (IRR = 2.79, p < 0.01) and a simple cooking treatment (IRR = 2.36, p = 0.01) also demonstrated a substantial increase in the incidence rate of OT. Sensitivity and meta-regression analyses successfully identified specific studies contributing to heterogeneity in mouse models and clinical patients, although these studies did not impact the overall significant pooled effects. Conclusions: This meta-analysis provides preliminary evidence for the high intervention efficacy of slightly processed allergen/meat from fish and crustacea in OIT, both in mouse models and clinical patients. The Maillard reaction and cooking processing methods may emerge as potentially effective approaches to treating allergen/meat in OIT for clinical patients, offering a promising and specific treatment strategy for seafood allergy. However, these findings should be interpreted cautiously, and further supporting evidence is necessary.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Ratones , Humanos , Desensibilización Inmunológica/efectos adversos , Calidad de Vida , Hipersensibilidad a los Alimentos/etiología , Alimentos Marinos , Administración Oral
4.
NPJ Sci Learn ; 9(1): 26, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538593

RESUMEN

Dyslexia and developmental language disorders are important learning difficulties. However, their genetic basis remains poorly understood, and most genetic studies were performed on Europeans. There is a lack of genome-wide association studies (GWAS) on literacy phenotypes of Chinese as a native language and English as a second language (ESL) in a Chinese population. In this study, we conducted GWAS on 34 reading/language-related phenotypes in Hong Kong Chinese bilingual children (including both twins and singletons; total N = 1046). We performed association tests at the single-variant, gene, and pathway levels. In addition, we tested genetic overlap of these phenotypes with other neuropsychiatric disorders, as well as cognitive performance (CP) and educational attainment (EA) using polygenic risk score (PRS) analysis. Totally 5 independent loci (LD-clumped at r2 = 0.01; MAF > 0.05) reached genome-wide significance (p < 5e-08; filtered by imputation quality metric Rsq>0.3 and having at least 2 correlated SNPs (r2 > 0.5) with p < 1e-3). The loci were associated with a range of language/literacy traits such as Chinese vocabulary, character and word reading, and rapid digit naming, as well as English lexical decision. Several SNPs from these loci mapped to genes that were reported to be associated with EA and other neuropsychiatric phenotypes, such as MANEA and PLXNC1. In PRS analysis, EA and CP showed the most consistent and significant polygenic overlap with a variety of language traits, especially English literacy skills. To summarize, this study revealed the genetic basis of Chinese and English abilities in a group of Chinese bilingual children. Further studies are warranted to replicate the findings.

5.
J Transl Med ; 22(1): 94, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263182

RESUMEN

BACKGROUND: Allergic diseases (ADs) such as asthma are presumed risk factors for COVID-19 infection. However, recent observational studies suggest that the assumed correlation contradicts each other. We therefore systematically investigated the genetic causal correlations between various ADs and COVID-19 infection/severity. METHODS: We performed a two-sample, bidirectional Mendelian randomization (MR) study for five types of ADs and the latest round of COVID-19 GWAS meta-analysis datasets (critically ill, hospitalized, and infection cases). We also further validated the significant causal correlations and elucidated the potential underlying molecular mechanisms. RESULTS: With the most suitable MR method, asthma consistently demonstrated causal protective effects on critically ill and hospitalized COVID-19 cases (OR < 0.93, p < 2.01 × 10-2), which were further confirmed by another validated GWAS dataset (OR < 0.92, p < 4.22 × 10-3). In addition, our MR analyses also observed significant causal correlations of food allergies such as shrimp allergy with the risk of COVID-19 infection/severity. However, we did not find any significant causal effect of COVID-19 phenotypes on the risk of ADs. Regarding the underlying molecular mechanisms, not only multiple immune-related cells such as CD4+ T, CD8+ T and the ratio of CD4+/CD8+ T cells showed significant causal effects on COVID-19 phenotypes and various ADs, the hematology traits including monocytes were also significantly correlated with them. Conversely, various ADs such as asthma and shrimp allergy may be causally correlated with COVID-19 infection/severity by affecting multiple hematological traits and immune-related cells. CONCLUSIONS: Our systematic and bidirectional MR analyses suggest a unidirectional causal effect of various ADs, particularly of asthma on COVID-19 infection/severity, but the reverse is not true. The potential underlying molecular mechanisms of the causal effects call for more attention to clinical monitoring of hematological cells/traits and may be beneficial in developing effective therapeutic strategies for allergic patients following infection with COVID-19.


Asunto(s)
Asma , COVID-19 , Hipersensibilidad , Humanos , Linfocitos T CD8-positivos , Enfermedad Crítica
6.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096870

RESUMEN

Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the 'regulon' of the mouse male germline and supporting somatic cells.


Asunto(s)
Cromatina , Testículo , Masculino , Embarazo , Femenino , Animales , Ratones , Cromatina/metabolismo , Testículo/metabolismo , Estudio de Asociación del Genoma Completo , Factores de Transcripción/metabolismo , Espermatogénesis/genética , Análisis de la Célula Individual
7.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047515

RESUMEN

Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine kinase, mediates various neuronal functions, including cell death. Abnormal upregulation of DAPK1 is observed in human patients with neurological diseases, such as Alzheimer's disease (AD) and epilepsy. Ablation of DAPK1 expression and suppression of DAPK1 activity attenuates neuropathology and behavior impairments. However, whether DAPK1 regulates gene expression in the brain, and whether its gene profile is implicated in neuronal disorders, remains elusive. To reveal the function and pathogenic role of DAPK1 in neurological diseases in the brain, differential transcriptional profiling was performed in the brains of DAPK1 knockout (DAPK1-KO) mice compared with those of wild-type (WT) mice by RNA sequencing. We showed significantly altered genes in the cerebral cortex, hippocampus, brain stem, and cerebellum of both male and female DAPK1-KO mice compared to those in WT mice, respectively. The genes are implicated in multiple neural-related pathways, including: AD, Parkinson's disease (PD), Huntington's disease (HD), neurodegeneration, glutamatergic synapse, and GABAergic synapse pathways. Moreover, our findings imply that the potassium voltage-gated channel subfamily A member 1 (Kcna1) may be involved in the modulation of DAPK1 in epilepsy. Our study provides insight into the pathological role of DAPK1 in the regulatory networks in the brain and new therapeutic strategies for the treatment of neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Transcriptoma , Humanos , Ratones , Masculino , Femenino , Animales , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Muerte Celular
8.
Nutrients ; 16(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38201909

RESUMEN

BACKGROUND: Observational studies have implied a potential correlation between allergic diseases and major depressive disorder (MDD). However, the relationship is still inconclusive as it is likely to be interfered with by substantial confounding factors and potential reverse causality. The present study aimed to investigate causal correlation of the two diseases by a Mendelian randomization (MR) study and further elucidate the underlying molecular mechanisms. METHODS: With the biggest summary datasets of a genome-wide association study (GWAS) in the East Asian population, we conducted a two-sample, bidirectional MR study to assess the causal correlation between shrimp allergy (SA) and MDD. Subsequently, we identified the pleiotropic genes' susceptibility to the two diseases at whole-genome and tissue-specific levels, respectively. Enriched GO sets and KEGG pathways were also discovered to elucidate the potential underlying mechanisms. RESULTS: With the most suitable MR method, SA was identified as a causal risk factor for MDD based on three different groups of independent genetic instruments, respectively (p < 2.81 × 10-2). In contrast, we did not observe a significant causal effect of MDD on SA. The GWAS-pairwise program successfully identified seven pleiotropic genetic variants (PPA3 > 0.8), indicating that the two diseases indeed have a shared genetic basis. At a whole-genome level, the MAGMA program identified 44 pleiotropic genes, which were enriched in allergy-related pathways, such as antigen processing and presentation pathway (p = 1.46 × 10-2). In brain-specific tissue, the S-MultiXcan program found 17 pleiotropic genes that were significantly enriched in immune-related pathways and GO sets, including asthma-related pathway, T-cell activation-related, and major histocompatibility complex protein-related GO sets. Regarding whole-blood tissue, the program identified six pleiotropic genes that are significantly enriched in tolerance induction-related GO sets. CONCLUSIONS: The present study for the first time indicated a significant causal effect of SA on the occurrence of MDD, but the reverse was not true. Enrichment analyses of pleiotropic genes at whole-genome and tissue-specific levels implied the involvement of allergy and immune-related pathways in the shared genetic mechanism of the two diseases. Elucidating the causal effect and the acting direction may be beneficial in reducing the incidence rate of MDD for the massive group of SA patients in the East Asian region.


Asunto(s)
Trastorno Depresivo Mayor , Hipersensibilidad a los Mariscos , Humanos , Causalidad , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Pueblos del Este de Asia , Estudio de Asociación del Genoma Completo , Hipersensibilidad a los Mariscos/epidemiología
9.
Food Funct ; 13(17): 9078-9090, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35943407

RESUMEN

Tropomyosin (TM) is an important allergen in molluscans. However, there was a lack of information about TM as an allergen in oysters. TM was purified and identified from Alectryonella plicatula (ATM), and its primary sequence was cloned and encoded with 284 amino acids (AAs). Chemical denaturants were used to destroy the structure to confirm that linear epitopes played a major role in the immunoglobulin E-binding capacity of ATM. Subsequently, nine linear epitopes were identified using a serological test. The peptide with AA27-41 was regarded as the key epitope because it could be recognized strongly by most sera of oyster-sensitive individuals in comparison to other epitope peptides. Finally, the epitopes and the primary sequence of TM among shellfish were aligned to find the two conserved epitopes (AA117-132 and AA164-178) in oyster, octopus, abalone, scallop, clam, shrimp, and crab. Overall, these data provide a foundation for the allergenicity and cross-reactivity of TM.


Asunto(s)
Ostreidae , Tropomiosina , Alérgenos , Secuencia de Aminoácidos , Animales , Epítopos/química , Inmunoglobulina E , Péptidos , Tropomiosina/química
11.
Transl Psychiatry ; 11(1): 426, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389699

RESUMEN

Although displaying genetic correlations, psychiatric disorders are clinically defined as categorical entities as they each have distinguishing clinical features and may involve different treatments. Identifying differential genetic variations between these disorders may reveal how the disorders differ biologically and help to guide more personalized treatment. Here we presented a statistical framework and comprehensive analysis to identify genetic markers differentially associated with various psychiatric disorders/traits based on GWAS summary statistics, covering 18 psychiatric traits/disorders and 26 comparisons. We also conducted comprehensive analysis to unravel the genes, pathways and SNP functional categories involved, and the cell types and tissues implicated. We also assessed how well one could distinguish between psychiatric disorders by polygenic risk scores (PRS). SNP-based heritabilities (h2snp) were significantly larger than zero for most comparisons. Based on current GWAS data, PRS have mostly modest power to distinguish between psychiatric disorders. For example, we estimated that AUC for distinguishing schizophrenia from major depressive disorder (MDD), bipolar disorder (BPD) from MDD and schizophrenia from BPD were 0.694, 0.602 and 0.618, respectively, while the maximum AUC (based on h2snp) were 0.763, 0.749 and 0.726, respectively. We also uncovered differences in each pair of studied traits in terms of their differences in genetic correlation with comorbid traits. For example, clinically defined MDD appeared to more strongly genetically correlated with other psychiatric disorders and heart disease, when compared to non-clinically defined depression in UK Biobank. Our findings highlight genetic differences between psychiatric disorders and the mechanisms involved. PRS may help differential diagnosis of selected psychiatric disorders in the future with larger GWAS samples.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Mentales/genética , Herencia Multifactorial
12.
Bioinformatics ; 37(22): 4137-4147, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34050728

RESUMEN

MOTIVATION: Currently, most genome-wide association studies (GWAS) are studies of a single disease against controls. However, an individual is often affected by more than one condition. For example, coronary artery disease (CAD) is often comorbid with type 2 diabetes mellitus (T2DM). Similarly, it is clinically meaningful to study patients with one disease but without a related comorbidity. For example, obese T2DM may have different pathophysiology from nonobese T2DM. RESULTS: We developed a statistical framework (CombGWAS) to uncover susceptibility variants for comorbid disorders (or a disorder without comorbidity), using GWAS summary statistics only. In essence, we mimicked a case-control GWAS in which the cases are affected with comorbidities or a disease without comorbidity. We extended our methodology to analyze continuous traits with clinically meaningful categories (e.g. lipids), and combination of more than two traits. We verified the feasibility and validity of our method by applying it to simulated scenarios and four cardiometabolic (CM) traits. In total, we identified 384 and 587 genomic risk loci respectively for 6 comorbidities and 12 CM disease 'subtypes' without a relevant comorbidity. Genetic correlation analysis revealed that some subtypes may be biologically distinct from others. Further Mendelian randomization analysis showed differential causal effects of different subtypes to relevant complications. For example, we found that obese T2DM is causally related to increased risk of CAD (P = 2.62E-11). AVAILABILITY AND IMPLEMENTATION: R code is available at: https://github.com/LiangyingYin/CombGWAS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Enfermedad de la Arteria Coronaria/genética , Obesidad
13.
Adv Nutr ; 12(4): 1540-1557, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-33684217

RESUMEN

Osteoporosis is a global health issue among the aging population. The effect of the acid or base interventions on bone health remains controversial. This study performed a systematic review and meta-analysis to investigate effects of acidic diets and alkaline supplements on bone health simultaneously. We conducted a comprehensive literature search in 5 available databases and 1 registered clinical trial system to identify randomized controlled trials (RCTs) that assessed effects of the acid-base intervention on bone health. Depending on heterogeneity across studies, the pooled effects were calculated by fixed-effects or random-effects models. The present study included 13 acidic diet intervention studies and 13 alkaline supplement studies for final quantitative assessments. The meta-analysis showed that acidic diets significantly increased net acid excretion [NAE; standardized mean difference (SMD) = 2.99; P = 0.003] and urinary calcium excretion (SMD = 0.47, P < 0.00001) but had no significant effect on bone turnover markers and bone mineral density (BMD). On the other hand, alkaline supplement intervention significantly reduced NAE (SMD = -1.29, P < 0.00001), urinary calcium excretion (SMD = -0.44, P = 0.007), bone resorption marker aminoterminal cross-linking telopeptide (NTX; SMD = -0.29, P = 0.003), and bone formation marker osteocalcin (OC; SMD = -0.23, P = 0.02), but did not affect the other bone turnover markers. Furthermore, alkaline supplements significantly increased BMD in femoral neck [mean difference (MD) = 1.62, P < 0.00001, I2 = 0%], lumbar spine (MD = 1.66, P < 0.00001, I2 = 87%), and total hip (MD = 0.98, P = 0.02, I2 = 99%). Subsequently, meta-regression analyses identified 1 study that substantially contributed to the high heterogeneity of BMD in the latter 2 sites, but sensitivity analysis suggested that this study did not affect the significant pooled effects. Despite that, the results should be interpreted with caution and need to be further validated by a larger RCT. In summary, through integrating evidence from RCTs, the present meta-analysis initially suggests that alkaline supplements may be beneficial to bone metabolism and acidic diets may not be harmful to bone health. This work may be clinically useful for both clinicians and patients with osteoporosis.


Asunto(s)
Densidad Ósea , Osteoporosis , Anciano , Huesos , Calcio de la Dieta , Suplementos Dietéticos , Humanos , Osteoporosis/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188525, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600824

RESUMEN

Gynecological cancers are characterized by a high mortality rate when chemoresistance develops. Autophagy collaborates with apoptosis and participates in homeostasis of chemoresistance. Recent findings supported that crosstalk of necrotic, apoptotic and autophagic factors, and chemotherapy-driven hypoxia, oxidative stress and ER stress play critical roles in chemoresistance in gynecological cancers. Meanwhile, current studies have shown that autophagy could be regulated by and cooperate with metabolic regulator, survival factors, stemness factors and specific post-translation modification in chemoresistant tumor cells. Meanwhile, non-coding RNA and autophagy crosstalk also contribute to the chemoresistance. Until now, analysis of individual autophagy factors towards the clinical significance and chemoresistance in gynecological cancer is still lacking. We suggest comprehensive integrated analysis of cellular homeostasis and tumor microenvironment to clarify the role of autophagy and the associated factors in cancer progression and chemoresistance. Panel screening of pan-autophagic factors will pioneer the development of risk models for predicting efficacy of chemotherapy and guidelines for systematic treatment and precision medicine.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Neoplasias de los Genitales Femeninos/metabolismo , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estrés Oxidativo , Transducción de Señal , Microambiente Tumoral
15.
Am J Physiol Endocrinol Metab ; 319(6): E1019-E1030, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32985256

RESUMEN

Glucagon-like peptide-1 (GLP-1) is a novel antidiabetic agent used in clinical practice. Recently, it was reported to exert a renoprotective effect in the human kidney-2 cells and kidneys of diabetic rats, which was induced by one type of GLP-1 analog, liraglutide, in the presence of high glucose. However, most of the previous findings mainly focused on its indirect effect in inhibiting the advanced glycation end products. Here, besides glycemic control, we also demonstrated a stimulatory role of liraglutide in promoting autophagy and relieving oxidative stress in Zucker diabetic fatty rats. The renoprotective effect of liraglutide has been demonstrated by significantly decreasing urinary albumin (P < 0.01) and ameliorating renal pathological changes (P < 0.001) in vivo. Besides that, proliferation of human epithelial kidney cell line HKC-8 and human embryonic kidney-293 cells has increased after treating with exendin-4, a GLP-1 receptor (GLP-1R) agonist. Moreover, GLP-1 could positively improve the progression of autophagy in vivo and in vitro through regulating the autophagy-related protein light chain 3 and p62 via AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway. Simultaneously, it could reverse NF-erythroid 2-related factor 2 (NRF2) translocation into the nuclei and suppress oxidative stress. In terms of mechanism, the renoprotective effect of GLP-1 would be exerted via the GLP-1R-AMPK-mTOR-autophagy-reactive oxygen species signaling axis. The present study not only illustrates the renoprotective effect of GLP-1 in diabetic kidney disease (DKD) rats, but also for the first time elucidates the underlying mechanism that is independent of controlling glucose, which implies that GLP-1 might be a novel therapeutic strategy for the prevention and treatment of DKD.


Asunto(s)
Autofagia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Péptido 1 Similar al Glucagón/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Exenatida/farmacología , Exenatida/uso terapéutico , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Células HEK293 , Humanos , Ratas , Ratas Zucker , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
16.
Gene ; 755: 144901, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32554045

RESUMEN

BACKGROUND: The genetic basis of suicide attempts (SA) remains unclear. Especially the role of copy number variations (CNVs) remains to be elucidated. The present study aimed to identify susceptibility variants associated with SA among Chinese with major depressive disorder (MDD), covering both CNVs and single-nucleotide polymorphisms (SNPs). METHODS: We conducted a genome-wide association study (GWAS) on MDD patients with and without SA and top results were tested in a replication study. A genome-wide CNV study was also performed. Subsequently, a validation assay using qRT-PCR technology was performed to confirm any associated CNVs and then applied to the entire cohort to examine the association. RESULTS: Although GWAS did not identify any SNPs reaching genome-wide significance, we identified TPH2 as the top susceptibility gene (p-value = 2.75e-05) in gene-based analysis, which is a strong biological candidate for its role in the serotonergic system. As for CNV analysis, we found that the global rate of CNV was higher in SA than that in non-SA subjects (p-value = 0.023). Genome-wide CNV study revealed an SA-associated CNV region that achieved genome-wide significance (corrected p-value = 0.014). The associated CNV was successfully validated with a more rigorous qRT-PCR assay and identified to be a common variant in this cohort. Its deletion rate was higher in SA subjects [OR = 2.05 (1.02-4.12), adjusted p-value = 0.045]. Based on the GTEx database, genetic variants that probed this CNV were significantly associated with the expression level of ZNF33B in two brain regions (p-value < 4.2e-05). In stratified analysis, the CNV showed a significant effect [OR = 2.58 (1.06-6.27), p-value = 0.039] in those with high neuroticism but not in those with average or low neuroticism. CONCLUSIONS: We identified a new common CNV likely involved in the etiology of SA. This finding sheds light on an important role of common CNVs in the pathophysiology of SA, suggesting a new promising avenue for investigating its genetic architecture.


Asunto(s)
Trastorno Depresivo Mayor/genética , Intento de Suicidio/psicología , Factores de Transcripción/genética , Adulto , Pueblo Asiatico/genética , China , Cromosomas Humanos Par 10 , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Suicidio/psicología , Triptófano Hidroxilasa/genética
17.
Diabetes Care ; 43(7): 1416-1426, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32430459

RESUMEN

OBJECTIVE: COVID-19 has become a major public health problem. There is good evidence that ACE2 is a receptor for SARS-CoV-2, and high expression of ACE2 may increase susceptibility to infection. We aimed to explore risk factors affecting susceptibility to infection and prioritize drug repositioning candidates, based on Mendelian randomization (MR) studies on ACE2 lung expression. RESEARCH DESIGN AND METHODS: We conducted a phenome-wide MR study to prioritize diseases/traits and blood proteins causally linked to ACE2 lung expression in GTEx. We also explored drug candidates whose targets overlapped with the top-ranked proteins in MR, as these drugs may alter ACE2 expression and may be clinically relevant. RESULTS: The most consistent finding was tentative evidence of an association between diabetes-related traits and increased ACE2 expression. Based on one of the largest genome-wide association studies on type 2 diabetes mellitus (T2DM) to date (N = 898,130), T2DM was causally linked to raised ACE2 expression (P = 2.91E-03; MR-IVW). Significant associations (at nominal level; P < 0.05) with ACE2 expression were observed across multiple diabetes data sets and analytic methods for T1DM, T2DM, and related traits including early start of insulin. Other diseases/traits having nominal significant associations with increased expression included inflammatory bowel disease, (estrogen receptor-positive) breast cancer, lung cancer, asthma, smoking, and elevated alanine aminotransferase. We also identified drugs that may target the top-ranked proteins in MR, such as fostamatinib and zinc. CONCLUSIONS: Our analysis suggested that diabetes and related traits may increase ACE2 expression, which may influence susceptibility to infection (or more severe infection). However, none of these findings withstood rigorous multiple testing corrections (at false discovery rate <0.05). Proteome-wide MR analyses might help uncover mechanisms underlying ACE2 expression and guide drug repositioning. Further studies are required to verify our findings.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Enzima Convertidora de Angiotensina 2 , COVID-19 , Diabetes Mellitus Tipo 2/complicaciones , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Pandemias , Receptores Virales/metabolismo , SARS-CoV-2
19.
Microbiologyopen ; 8(8): e00810, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31001921

RESUMEN

The complex relationship between intestinal microbiota and host is a novel field in recent years. A large number of studies are being conducted on the relationship between intestinal microbiota and bone metabolism. Bone metabolism consisted of bone absorption and formation exists in the whole process of human growth and development. The nutrient components, inflammatory factors, and hormone environment play important roles in bone metabolism. Recently, intestinal microbiota has been found to influence bone metabolism via influencing the host metabolism, immune function, and hormone secretion. Here, we searched relevant literature on Pubmed and reviewed the effect of intestinal microbiota on bone metabolism through the three aspects, which may provide new ideas and targets for the clinical treatment of osteoporosis.


Asunto(s)
Resorción Ósea , Huesos/metabolismo , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Osteoporosis/fisiopatología , Humanos
20.
Genome Biol ; 20(1): 84, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31027518

RESUMEN

BACKGROUND: Circular RNAs are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. In the current study, we evaluate the function of a novel circRNA derived from the ß-catenin gene locus, circß-catenin. RESULTS: Circß-catenin is predominantly localized in the cytoplasm and displays resistance to RNase-R treatment. We find that circß-catenin is highly expressed in liver cancer tissues when compared to adjacent normal tissues. Silencing of circß-catenin significantly suppresses malignant phenotypes in vitro and in vivo, and knockdown of this circRNA reduces the protein level of ß-catenin without affecting its mRNA level. We show that circß-catenin affects a wide spectrum of Wnt pathway-related genes, and furthermore, circß-catenin produces a novel 370-amino acid ß-catenin isoform that uses the start codon as the linear ß-catenin mRNA transcript and translation is terminated at a new stop codon created by circularization. We find that this novel isoform can stabilize full-length ß-catenin by antagonizing GSK3ß-induced ß-catenin phosphorylation and degradation, leading to activation of the Wnt pathway. CONCLUSIONS: Our findings illustrate a non-canonical function of circRNA in modulating liver cancer cell growth through the Wnt pathway, which can provide novel mechanistic insights into the underlying mechanisms of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , ARN/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , Animales , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones Desnudos , Metástasis de la Neoplasia , ARN Circular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...